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Abstract

Over the past decade, a number of methods have emerged for
inferring protein-level transcription factor activities in individual
samples based on prior information about the structure of the
gene regulatory network. We discuss how this has enabled
new approaches for dissecting trans-acting mechanisms that
underpin genetic variation in gene expression.
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Introduction

The structural and functional unit of life is the cell.
Thanks to remarkable recent advances in genomics, cells
have been probed at many levels (genome sequence,
mRNA transcript abundance, epigenetic modification,
efc.) and in a variety of genetic and physiological con-
texts. The Roadmap Epigenomics Consortium
(roadmapepigenomics.org) has generated a large collec-
tion of functional genomics data for primary cells and
tissues, including histone modification patterns, DNA
accessibility, DNA methylation, and RNA expression
[1]. In a separate initiative, the Genome-Tissue

Expression (GTEx) project (gtexportal.org) has
collected parallel genotype and RNA-seq data for dozens
of tissues across hundreds of human individuals [2]. The
Cancer Genome Atlas (TCGA) project (cancergenome.
nih.gov) provides a similar resource for a variety of
human tumors [3]. These rich compendia provide new
opportunities for dissecting the genetic and molecular
mechanisms that underlie cellular behavior. To derive
actionable knowledge from them, however, new inte-
grative computational methods are needed.

The genome sequence of individual organisms from the
same species varies naturally within a population, as new
combinations of alleles are created in each generation by
genetic recombination between parental genomes
during meiosis. As a consequence of this variation,
myriad measurable traits differ between individuals;
these can include classic variables such as the rate of cell
division, but also intermediate phenotypic variables
such as transcript abundances for all genes. A more
subtle kind of quantitative trait is the cell’s sensitivity to
changes in external parameters, such as responsiveness
to a particular drug. In general, the internal state of the
cell may vary along any of a large number of regulatory
dimensions or “pathways.” It is important to establish
which natural variables are the most useful for quanti-
tying cellular state.

Protein-level regulatory activity of
transcription factors as a hidden variable
Transcription factors (TF) are proteins that bind to
DNA with an affinity that depends on the base
sequence at the protein-DNA interface. Defining the
binding specificity of TFs in the form of “motifs” or
“weight matrices” [4] has received much attention in
the literature. A number of high-throughput assays for
probing i vitro protein-DNA interactions have been
developed, based on DNA microarray [5,6] or deep
sequencing [7—10] technology. The development of
computational methods for building accurate sequence-
to-affinity models from such data [11] continues to be
an active area of research.

However, DNA binding specificity is only one aspect of
TF function. It is equally important to know to what
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extent the nuclear presence of a TF contributes to the
mRNA expression level of its target genes in any given
cellular state. This state can be influenced by genetic
variation among individuals, by the epigenetic state of
the cell (i.e., it is different between cell types, tissues or
energetic states), and by external agents (e.g., hormones
or drugs). Over the past decade and a half, a number of
computational methods have been developed that are
capable of inferring the protein-level regulatory activity
of a transcription factor from the mRNA expression
levels of its known or predicted target genes [12]. This
activity can be thought of as the net global effect on
gene expression of active TF protein in the nucleus. It is
usually quantified as a differential activity relative to a
reference sample. Regulation of the subcellular distri-
bution of the TF (nuclear vs. cytoplasmic) through post-
translational modification is a major mode of TF activity
modulation: the genome resides in the nucleus, and
therefore cytoplasmic TF protein cannot contribute to
transcriptional activation or repression. Cell-type-
specific co-factors can also modulate the ability of a
TF to influence gene expression (Figure 1A).

Figure 1
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A network-level perspective on genetic variation in gene expression.
(A) Genetic polymorphisms can affect the protein-level activity of a tran-
scription factor (TF) or the modulating effect of a co-factor. This in turn af-
fects the mRNA expression level of target genes. (B) Prior information about
target gene sets (regulons) can be used to infer TF activity. (C) Alternatively,
prior information about TF-target connectivity can be used for the same
purpose. (D) By considering the relationship between the activity of a TF
and the mRNA expression level of a putative target gene, the strength of
their functional connection (i.e., the “susceptibility” or “responsiveness” of
the gene to changes in the activity of the TF) can be estimated.

The simplest methods for inferring TF activity are
based on prior information on the set of regulatory
targets, sometimes referred to as the “regulon”, of a
given TF (Figure 1B). The “T-profiler” method [13],
introduced over a decade ago, uses a standard statis-
tical test (Student’s t-test) to analyze the extent to
which the mean expression of the genes that belong to
the regulon, and those that do not, differs; in cases
where a normal distribution of the expression values
cannot be assumed, a non-parametric variant of the t-
test (Wilcoxon—Mann—Whitney test) can be used.
“Gene Set Enrichment Analysis” (GSEA) [14], which
relies on an ad hoc statistic inspired by the Kolmogor-
ov—Smirnov test and requires sampling from an
empirical null distribution to assess statistical signifi-
cance, has also been widely used to analyze differential
expression of the level of gene sets. The regulons used
in these analyses can be defined based on a variety of
criteria: such as the occurrence of TF binding motifs
near the gene, or evidence of # vivo occupancy from
chromatin-immunoprecipitation (ChIP) assays [15]. In
a related approach, the correlation structure of tran-
script abundance across a large number of conditions is
analyzed in order to define regulons [16], which can
subsequently be used to predict TF activity using the
GSEA statistic [17]. Approaches that analyze the
mutual information between motif-based and
expression-based gene sets have also been used to
infer 'TF activity [18].

In an alternative approach to inferring TF activity, the
degree to which a gene is expected to respond to a
change in the activity of the TF is treated as a
continuous variable, ranging from strong targets that
have high-affinity binding sites in their upstream
promoter region to weak targets with low-affinity sites.
This motivates an approach based on linear regression
(Figure 1C), in which the independent variable (the
“predictor” or x-variable) is constructed by using a
consensus motif or scoring matrix to scan the cis-
regulatory sequence of each gene, while the differen-
tial expression value for the gene plays the role of
dependent variable (the “response” or y-variable). The
regression coefficient or “slope” can be interpreted as
the differential TF activity. The earliest implementa-
tion of this idea was the REDUCE algorithm, which
used the number of matches to a simple DNA binding
consensus motif as a predictor [19]. Subsequent
studies showed how the motif-based predictor could
be improved by considering the expression response of
cach gene to deletion of the TF [20], by using weight
matrices to quantify binding affinity [21], or by
considering the pattern of conservation between
orthologous promoter regions [22]. Other extensions of
this regression-based approach have also been
described [23,24].
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Transcription factor activity as a genetic
trait

The ability to infer TF activity in individual samples
provides a unique opportunity for understanding how
genetic variation can drive phenotypic variation via
trans-acting mechanisms (Figure 1A). Lee et al. [25]
introduced the concept of “aQTLs” in which the
inferred TF activity is treated as a quantitative trait. In
their approach, linear regression, across all genes, of
genotype-specific expression changes on total promoter
affinities is first used to infer the activity of a large
number TFs for which the DNA binding specificity is
known in the form of a scoring matrix [25]. Genetic
polymorphisms that modulate TF activity are subse-
quently mapped using similar methods as for mapping
quantitative trait loci (eQTLs) that affect the mRINA
expression level of an individual gene [26].

Locus Expression Signature Analysis (LESA; [27]) is a
variant of the aQTL approach. In this study, genome-
wide signatures that quantify the gene expression
response to genetic perturbation at a particular locus
were constructed for a panel of mouse tumors created
through viral insertional mutagenesis, as well as from
TCGA data. These signatures were then further char-
acterized in order to link genetic loci to the TFs whose
activity they perturb, or to identify therapeutic locus-
drug combinations [27]. Empirically defined regulons
have also been used to infer TF activity across TCGA
samples and analyze the regulatory connectivity be-
tween TFs and their upstream signaling pathways [28].

DNA-binding proteins are not the only trans-acting
factors involved in regulating gene expression. Control
of transcript stability by RNA binding regulatory factors
is also important [18,29—32]. An early study used eQTL
data to analyze post-transcriptional regulation by
exploiting modules of co-expressed genes [33]. More
recently, the methodology for mapping aQTLs was
adapted to identify genetic polymorphisms that modu-
late the activity of RNA binding proteins acting as post-
transcriptional regulators of gene expression [34].

Regulatory network connectivity as a
genetic trait

Thus far, we have touched upon two distinct views on
how genetic variation can impact gene expression. The
first and most widely explored considers cis-acting
polymorphisms. For instance, a single-nucleotide poly-
morphism (SNP) in a TF binding site can change the
affinity for the TE and thereby influence TF occupancy
[35—37]. A number of methods aim to explain the
impact of SNPs on local chromatin accessibility in terms
of their effect on TF binding [11,38—41]. Variation in
the amino-acid sequence of the TFs has recently been
shown to be more common than previously assumed,
and can have a significant impact on DNA binding

specificity [42]. More subtle regulatory traits such as the
degree to which transcriptional initiation is spread over
multiple positions within a particular promoter have also
been shown to have a genetic component [43]. In the
second view, #rans-acting loci exert their effect along a
causal path that begins at the polymorphism, continues
via signal transduction pathways upstream of the TE
affects the protein-level activity of the TE and finally
proceeds downstream to affect the transcript abundance
of target genes.

The techniques outlined above may be exploited
further to analyze transcriptional network structure, by
analyzing the relationship between the inferred activity
of a TF and the mRNA expression level of its putative
targets across a large number of cell states. Inspired by
techniques for refining TF-target networks [44,45], Gao
et al. [46] analyzed the extent to which TF binding to a
gene’s promoter implies that the gene’s expression level
is regulated by the TFE By performing regression of the
mRNA level of each putative target gene on inferred TF
activity, the sensitivity of the gene to changes in TF
activity (its regulatory “susceptibility”) was estimated
from the data [31,46]. Alternative approaches have also
been used to distinguish functional from non-functional
TF binding sites [47].

The degree to which a gene responds to a given TF is
context-specific; for instance, it can depend on co-
factors that modulate the subcellular distribution of a
TF or its interactions with its DNA binding sites. An
early attempt to map modulators of regulatory connec-
tivity was based on expression data alone [48]; however,
the need to avoid confounding between TF-target and
TF-modulator correlation posed a limitation. The
emergence of parallel genotype and expression data
across populations provided a new opportunity to pursue
this line of analysis, and allowed network connectivity
QTLs (or “cQTLs”) to be mapped [49]. This type of
analysis led to the prediction that activation of the gene
expression response to mating pheromone by the tran-
scription factor Stel2p in the yeast Saccharomyces cerevi-
stae was modulated by a non-synonymous single-
nucleotide polymorphism (SNP) in the co-factor Dig2,
which was validated by reporter gene experiments on
allele replacements strains [49]. A similar approach has
been used in a human cancer context [28]. These suc-
cessful case studies illustrate how genetic factors that
modulate the response of a cell to external perturbation
(mating pheromone in yeast, or a drug in human) may be
systematically uncovered.

Conclusion

A conceptual framework now exists for analyzing varia-
tion in genome expression from the perspective of trans-
acting pathways. The different classes of approaches
that have been proposed so far each have their own
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limitations. Those based on empirical prior definition of
sets of TF targets or “regulons” rely on observation of
the behavior of cells to define the connectivity of the
gene regulatory networks. They require dedicated
compendia of functional genomics and are therefore
relatively expensive. Alternative approaches that
explicitly rely on interpretation of the non-coding
genome sequence in terms of TF binding affinities
have so far mostly been limited to model organisms.
They are intrinsically more difficult to implement, as
they essentially require one to predict expression from
sequence, a notoriously hard problem. However, with
the increasing availability of information on the i vitro
DNA binding specificity of human transcription factors,
as well as cell-type specific information about chromatin
context, they are now poised to become mainstream
tools for elucidating the molecular mechanisms through
which sequence variation drives changes in gene
expression in normal and diseased human tissue.
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